
Penicillin is β-lactam antibiotics, used in the treatment of bacterial 
infections caused by , usually Gram-positive, organisms.

derived from Penicillium fungi.



6-aminopenicillinic acid



The discovery of penicillin is attributed to Scottish
scientist and Nobel laureate Alexander Fleming in 
1928.

http://en.wikipedia.org/wiki/Alexander_Fleming
http://en.wikipedia.org/wiki/Scotland


Biosynthesis

There are three main and important steps to the biosynthesis of penicillin G

(benzylpenicillin.
•The first step is the condensation of three amino acids—-L ,dica cipidaonima-L ,enietsyc-
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D emoceb ot noitaziremipe ogrednu tsum- deman si editpepirt desnednoc ehT .enilav-L(-
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L( emyzne eht yb dezylatac htob era-α-)lypidaonima-L-enietsyc-D-  esatehtnys enilav

)SVCA(,  .

The second step in the biosynthesis of penicillin G is the oxidative
conversion of linear ACV into the bicyclic intermediate isopenicillin N by 
isopenicillin N synthase (IPNS), Isopenicillin N is a very weak 
intermediate, because it does not show strong antibiotic activity
The final step is a transamidation by isopenicillin N N-acyltransferase, 
in which the α-aminoadipyl side-chain of isopenicillin N is removed 
and exchanged for a phenylacetyl side-chain. This reaction is encoded 
by the gene penDE, which is unique in the process of obtaining 
penicillins.[

http://en.wikipedia.org/wiki/Isopenicillin_N_synthase
http://en.wikipedia.org/wiki/Transamidation
http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Phenylacetic_acid
http://en.wikipedia.org/wiki/Tripeptide
http://en.wikipedia.org/wiki/Penicillin_G
http://en.wikipedia.org/wiki/Bicyclic_molecule
http://en.wikipedia.org/wiki/Isopenicillin_N_N-acyltransferase














p-hydroxy aminobenzyl penicillin(Amoxicillin)

acid-stable but inactivated by penicillinase ez. 





Cloxacillin, dicloxacillin, oxacillin, methicillin
& nafcillin : are semisynthetic P. that are not 
inactivated by penicillinas ez. 

Oxacillin

Cloxacillin

Dicloxacillin











cephalothin is a first-generation 
cephalosporin antibiotic. 

thiophene

https://en.wikipedia.org/wiki/Cephalosporin
https://en.wikipedia.org/wiki/Antibiotic


Cefoxitin is second−generation Its activity spectrum includes a broad range of 
gram-negative and gram-positive bacteria including anaerobes. It is inactive in 
vitro to most strains of Pseudomonas aeruginosa and many strains Enterobacter



thiazole



Cefepime is a fourth-generation cephalosporin antibiotic. 
Cefepime has an extended spectrum of activity against 
Gram-positive and Gram-negative bacteria, with greater 
activity against both types of organism than third-
generation agents.







AMINO ALKALOIDS or alkaloidal amines
GENERAL CHARACTERISTIC FEATURES:

‡

Proto-alkaloids

‡

Have no nitrogen as the part of the heterocyclic ring.

‡

Derived from amino acid like l-phenyl alanine.

‡

Physiologically active compounds‡Example:Ephedrine

(Ephedra species) and Colchicine(Colchicum autmnale)



BIOSYNTHESIS OF AMINO ALKALOIDS:

‡

Amino alkaloids are derived from amino acid l-phenyl 

alanine through shikimmic acid pathway

.

‡

The pathway finds its route from carbohydrates for the 

biosynthesis of C6-C3 units (i.e. phenylpropane

derivatives) like phenyl alanine and tyrosine

‡

An important branching point arises at chorismic acid, 

which acts as a precursor for different amino acid







Ephedrine                                                                 Colchicine



General Pharmacological Action & Uses Of Amino-alkaloids

Dilation of the bronchi (asthma),

Increase heart rate and

Peripheral vasoconstriction



It consists of dried young stems of Ephedra gerardiana F. 

(Ephedraceae)Ephedra



Uses of Ephedra

Sympathommimetic effects

‡

Bronchodilator in asthma

‡

In treatment of allergic conditions like hay fever

‡

As compared to adrenaline onset of action for ephedrine is 

slow, but effect is much prolonged, as it is not quickly 

hydrolyzed by mono amine oxidase in the body.

Causes peripheral contraction of arterioles, therefore used 

to correct the low blood p.



Colchicum



It consists of dried ripe seeds and fresh or dried sliced 

corms of Colchicum autumnale Family: Liliaceae

The main alkaloids found in this plant Colchicine which 

is used in the treatment of gout.

http://en.wikipedia.org/wiki/Gout
//upload.wikimedia.org/wikipedia/commons/2/2e/Colchicine_structure.png
//upload.wikimedia.org/wikipedia/commons/2/2e/Colchicine_structure.png


Indole alkaloid
Indole alkaloids are a class of alkaloids containing a structural moiety
of indole

Many of them possess significant physiological activity and some of them are used in 

medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids

http://en.wikipedia.org/wiki/Biochemical
http://en.wikipedia.org/wiki/File:Indole_numbered.svg
http://en.wikipedia.org/wiki/Moiety_(chemistry)
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/File:Indole_numbered.svg
http://en.wikipedia.org/wiki/Indole
http://en.wikipedia.org/wiki/Alkaloids


Classification
Depending on their biosynthesis, two types of indole alkaloids 

are distinguished; isoprenoids and non-isoprenoids. The latter 

include terpenoid structural elements, synthesized by living 

organisms from dimethylallyl pyrophosphate (DMAPP) and/or 

isopentenyl pyrophosphate (IPP):

Non-isoprenoid: 

Simple derivatives of indole

Simple derivatives of β-carboline

Pyrroloindole alkaloids

Isoprenoid: 

hemiterpenoids: ergot alkaloids

monoterpenoids.

http://en.wikipedia.org/wiki/Beta_carboline
http://en.wikipedia.org/wiki/Terpenoid
http://en.wikipedia.org/wiki/Indole
http://en.wikipedia.org/wiki/Monoterpene
http://en.wikipedia.org/wiki/Isopentenyl_pyrophosphate
http://en.wikipedia.org/wiki/Dimethylallyl_pyrophosphate
http://en.wikipedia.org/wiki/Terpene


Biosynthesis
Biogenetic precursor of all indole alkaloids is the amino acid tryptophan. For most of 

them, the first synthesis step is decarboxylation of tryptophan to form tryptamine. 

Dimethyltryptamine (DMT) is formed from tryptamine by methylation with the 

participation of coenzyme of S-adenosyl methionine (SAM). Psilocin is produced from 

dimethyltryptamine by oxidation and is then phosphorylated into psilocybin.

http://en.wikipedia.org/wiki/Decarboxylation
http://en.wikipedia.org/wiki/Psilocybin
//upload.wikimedia.org/wikipedia/commons/c/c3/Psilocybin_biosynthesis.png
http://en.wikipedia.org/wiki/S-adenosyl_methionine
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http://en.wikipedia.org/wiki/Phosphorylation
http://en.wikipedia.org/wiki/Tryptamine
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Coenzyme
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http://en.wikipedia.org/wiki/Methylation


Biosynthesis of β-carboline alkaloids occurs through the 

formation of Schiff base from tryptamine and aldehyde (or keto 

acid) and subsequent intramolecular Mannich reaction, where the 

C(2) carbon atom of indole serves as a nucleophile. Then, the 

aromaticity is restored via the loss of a proton at the C(2) atom. 

http://en.wikipedia.org/wiki/Keto_acid
http://en.wikipedia.org/wiki/Beta_carboline
http://en.wikipedia.org/wiki/Mannich_reaction
http://en.wikipedia.org/wiki/Schiff_base
http://en.wikipedia.org/w/index.php?title=Nucleophilic_addition_reactions&action=edit&redlink=1
http://en.wikipedia.org/wiki/Aldehyde
http://en.wikipedia.org/wiki/Aromatic_compound


Biosynthesis of monoterpenoid indole

alkaloids begins with the Mannich reaction 

of tryptamine and secologanin; it yields 

strictosidine which is converted to 4,21-

dehydrogeissoschizine. Then, the 

biosynthesis of most alkaloids containing 

the unperturbed monoterpenoid part 

(Corynanthe type) proceeds through 

cyclization with the formation of 

cathenamine and subsequent reduction to 

ajmalicine in the presence of nicotinamide

adenine dinucleotide phosphate (NADPH).

http://en.wikipedia.org/w/index.php?title=Strictosidine&action=edit&redlink=1
http://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
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One of the most important plants containing this type of alkaloids 

Rauwolfia serpentina

is a species of flowering plant in the family Apocynaceae. It is native to South and East 

Asia 

Chemical constituents

contains a number of bioactive chemicals, including ajmaline, aricine, 

corynanthine, deserpidine , rescinnamine, reserpine, reserpiline, 

isoreserpine, isoreserpiline, serpentinine

http://en.wikipedia.org/wiki/Flowering_plant
http://en.wikipedia.org/wiki/Reserpine
http://en.wikipedia.org/wiki/Apocynaceae
http://en.wikipedia.org/w/index.php?title=Isoreserpine&action=edit&redlink=1
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http://en.wikipedia.org/w/index.php?title=Isoreserpiline&action=edit&redlink=1


Reserpine is an alkaloid first isolated from R. serpentina and was widely used as an 

antihypertensive drug. It had drastic psychological side effects and has been replaced 

as a first-line antihypertensive drug by other compounds that lack such adverse effects, 

although combination drugs that include it are still available in some countries as 

second-line antihypertensive drugs.

The antihypertensive actions of reserpine are a result of its 

ability to deplete catecholamines (among other monoamine 

neurotransmitters) from peripheral sympathetic nerve endings. 

These substances are normally involved in controlling heart 

rate, force of cardiac contraction and peripheral resistance.

http://en.wikipedia.org/wiki/Monoamine_neurotransmitters
http://en.wikipedia.org/wiki/Antihypertensive_drug
http://en.wikipedia.org/wiki/Catecholamine
//upload.wikimedia.org/wikipedia/commons/d/d6/Reserpine.png
http://en.wikipedia.org/wiki/Rauvolfia_serpentina
http://en.wikipedia.org/wiki/Alkaloid
http://en.wikipedia.org/wiki/Reserpine
//upload.wikimedia.org/wikipedia/commons/d/d6/Reserpine.png
http://en.wikipedia.org/wiki/First-line_treatment


Deserpidine

is an antihypertensive drug related to 

reserpine found in Rauwolfia spp. Chemically 

it is 11-desmethoxy reserpine 



Catharanthus roseus or Vinca 

F. Apocynaceae



more than 70 different alkaloids  have been isolated  from Catharanthus roseus

they are  generally   indole and dihydroindole derivatives  some of which   occur 

in other members of the apocynaceae these include ajmalicine , serpintine. the  

alkaloids  with  anti-neoplastic activity  belong  to a new  class of  dimeric indole

- dihydroindole derivatives .  Two of them are  available  at  present  as 

prescription  Drugs  : Vincristine & Vinblastine.  mechanism of 

action: 
The most characteristic effect  of these drugs  is the arrest of  cell  division  at 

metaphase. Tubulin is a structural protein that polymerizes to microtubules. The 

cell cytoskeleton and mitotic spindle, among other things, are made of 

microtubules. Vincristine &  Vinblastine bind to tubulin dimers, inhibiting 

assembly of microtubule structures. Disruption of the microtubules arrests mitosis

in metaphase. Therefore, the vinca alkaloids affect all rapidly dividing cell types 

including cancer cells, but also those of intestinal epithelium and bone marrow

The main side-effects of vincristine are peripheral 

neuropathy, hyponatremia, constipation, and hair 

loss

http://en.wikipedia.org/wiki/Vinca
http://en.wikipedia.org/wiki/Mitotic_spindle
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/Cancer_pain#Chemotherapy-induced_peripheral_neuropathy
http://en.wikipedia.org/wiki/Constipation
http://en.wikipedia.org/wiki/Microtubule
http://en.wikipedia.org/wiki/Cytoskeleton
http://en.wikipedia.org/wiki/Mitosis
http://en.wikipedia.org/wiki/Tubulin
http://en.wikipedia.org/wiki/Hyponatremia
http://en.wikipedia.org/wiki/Metaphase
http://en.wikipedia.org/wiki/Alkaloids
http://en.wikipedia.org/wiki/Alopecia
http://en.wikipedia.org/wiki/Epithelium
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Nux vomica is the dried ripe seed of Strychnos nux-vomica F. 

Loganiaceae contains strychnine and other chemicals that affect the brain and 

cause muscle contractions. This can lead to convulsions and death. 

It is a major source of the highly poisonous 

alkaloids strychnine and brucine
There are no uses in modern medicine, although it was widely used in medicine 

before World War II. Strychnine is a deadly poison with a lethal dose to humans 

of about 30 to 120 mg. Survival of substantially higher doses has been 

reported. The properties of Nux Vomica are those of the alkaloid strychnine. 

Strychnine is eliminated with a half-life of about 12 hours.

The most direct symptom caused by strychnine is violent convulsions due to a 

simultaneous stimulation of the motor or sensory ganglia of the spinal cord. 

During the convulsions there is a rise in blood pressure. Brucine closely 

resembles strychnine in its action, but is slightly less poisonous as it only 

causes paralysis of the peripheral motor nerves.

Strychnos nux-vomica has shown to suppress allergen-specific Immunoglobulin 

E (IgE) antibody response in mice, suggesting its possible application in allergic 

conditions.

In vitro Strychnos nux-vomica inhibited the growth of AGS human gastric 

carcinoma cells

http://www.webmd.com/baby/guide/normal-labor-and-delivery-process
http://en.wikipedia.org/wiki/Strychnine
http://en.wikipedia.org/wiki/Immunoglobulin_E
http://en.wikipedia.org/wiki/Alkaloid
http://www.webmd.com/brain/picture-of-the-brain
http://en.wikipedia.org/wiki/Brucine




Strychnine

Brucine

//upload.wikimedia.org/wikipedia/commons/4/4d/Brucine.svg
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Physostigma or  Calabar bean 
is the  dried  ripe seed of  Physostigma venenosum, F. Leguminosae a native of 

tropical Africa, poisonous to humans. It derives the first part of its scientific name from 

a curious beak-like appendage at the end of the stigma, in the centre of the flower.

Calabar bean contains physostigmine , a reversible cholinesterase inhibitor alkaloid. 

Physostigmine acts by interfering with the 

metabolism of acetylcholine. It is a 

covalent (reversible - bond hydrolyzed and 

released) inhibitor of acetylcholinesterase, 

the enzyme responsible for the breakdown 

of acetylcholine in the synaptic cleft of the 

neuromuscular junction.It indirectly 

stimulates both nicotinic and muscarinic 

receptors

Physostigmine is 

used to treat 

myasthenia gravis, 

glaucoma, 

Alzheimer's disease 

and delayed gastric 

emptying. It has been 

shown to improve 

short term memory 

//upload.wikimedia.org/wikipedia/commons/0/0a/Physostigmine_structure.png
//upload.wikimedia.org/wikipedia/commons/0/0a/Physostigmine_structure.png


Ergot
refers to a group of fungi of the genus Claviceps. Claviceps purpurea 

developed on plants of rye Secale cereale F. Gramineae This fungus 

grows on rye and related plants, and produces alkaloids that can cause 

ergotism in humans and other mammals who consume grains 

contaminated with its fruiting structure (called ergot sclerotium). 



ergot alkaloid, one of a large group of alkaloids derived from a common fungus, 

Claviceps purpurea. The alkaloids comprise three groups: the amino acid 

alkaloids typified by ergotamine, the dihydrogenated amino acid alkaloids such 

as dihydroergotamine, and the amine alkaloids such as ergonovine. 

indications Ergotamine and dihydroergotamine are less effective oxytocics

than ergonovine. Therefore ergonovine, given orally or intravenously, is 

currently used in obstetrics to treat or prevent postpartum uterine atony and to 

complete an incomplete or missed abortion. Ergotamine is prescribed to relieve 

migraine headache. It acts by reducing the amplitude of arterial pulsations in 

the external carotid branches of the cranial arteries resulting from stimulation of 

vasoconstrictive alpha receptors, and it may also act as a serotonin antagonist. 

See also missed abortion. 

contraindications Peripheral vascular disease, coronary artery disease, 

hypertension, renal or hepatic dysfunction, and sepsis are contraindications for 

ergot alkaloids. Pregnancy prohibits their use because they may cause 

contractions of the uterus, decreased blood flow to the fetus, and fetal death. 

adverse effects Ergot poisoning may result from prolonged or excessive use of 

the drug or accidental ingestion of contaminated grain. Signs of toxicity are 

thirst, diarrhea, dizziness, chest pain, abnormal and variable rate of cardiac 

contraction, nausea and vomiting, digital paresthesia, severe cramping, and 

seizures. Tissue anoxia and gangrene of the extremities may occur as a result 

of prolonged vasoconstriction if poisoning is severe. 



Ergotamine

Ergonovine

http://en.wikipedia.org/wiki/File:Ergotamine-skeletal.svg
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Abstract: Pyrrolizidine alkaloids (PA) are widely distributed in plants throughout the world,
frequently in species relevant for human consumption. Apart from the toxicity that these molecules
can cause in humans and livestock, PA are also known for their wide range of pharmacological
properties, which can be exploited in drug discovery programs. In this work we review the current
body of knowledge regarding the chemistry, toxicology, pharmacology and food safety of PA.

Keywords: pyrrolizidine alkaloids; chemistry; toxicity; pharmacological properties; food safety

1. Introduction

Alkaloids are a diverse group of amino acid-derived and nitrogen-bearing molecules that display
a wide range of roles in nature, where they occur in plants, microorganisms or animals [1]. In plants,
alkaloids can be found in the form of salts of organic acids, mainly malate, acetate and citrate,
or combined with other molecules, such as tannins [1]. Most alkaloids display basic properties
and present a lipophilic character, being soluble in apolar organic solvents and alcohol [1].

Several alkaloids are known for their remarkable biological properties, which can be either marked
toxicity or potent pharmacological capacity [2]. The class of alkaloids has a long history of use, both
lawful and illicit, as pharmaceuticals, stimulants and narcotics [3].

Within the many known families of alkaloids, pyrrolizidine alkaloids (PA) have been receiving
increasing attention due to their occurrence in several species relevant for human and animal nutrition,
as well as for their toxicological and pharmacological properties. The increasing awareness of PA
contamination in all sorts of foodstuff worldwide justifies the interest and concern around this topic.
Although in most cases their levels are insufficient to cause acute poisoning, they are frequently
consumed in quantities that exceed the maximum daily intake suggested by authorities, which can be
a contributory factor to chronic diseases.

This work reviews the available information on PA, mainly regarding their chemistry, toxic
and pharmacological properties, and food safety.

2. The Chemistry of PA

PA are a group of alkaloids derived from ornithine that are distributed in plants of certain taxa,
being also found in insects that uptake them for defense against predators [1,4]. They rarely occur in
the free form as a pyrrolizidine base, being instead found as esters (mono-, di- or macrocyclic diesters)
formed by a necine base (amino alcohols) and one or more necic acids (mono- or dicarboxylic aliphatic
acids), which are responsible for their structural diversity [1,5]. They are usually found in the form of
tertiary bases or pyrrolizidine alkaloids N-oxides (PANO) (Figure 1) [1,5,6].
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Figure 1. Structure of a PA and its different forms. R1 and R2 correspond to different necic acids. 

Amino alcohols, or necines, are derived from pyrrolizidine. The pyrrolizidine core, comprising 
two saturated five-membered rings with a nitrogen atom between them, sometimes displays a double 
bond in the 1,2 position, which frequently results in enhanced toxicity [7]. They can also have a single 
alcohol at C-1, a second alcohol in position C-7 (di-hydroxylated) and less often a third in C-2 or C-6 
(tri-hydroxylated) [8–10]. Esterification can take place at C-7 and/or C-9 positions [9]. 

According to the structure of the necine base, PA may be sorted into four groups: retronecine-, 
heliotridine-, otonecine- and platynecine-types (Figure 2) [11]. Retronecine-, otonecine- and 
heliotridine-types are unsaturated bases, while platynecine-type is saturated [12,13]. From a 
structural point of view, otonecine is the most distinct among all types, since it is oxidized at C-8 and 
displays a monocyclic ring, thus diverging from the other groups, which display a bicyclic ring 
[8,10,14]. Retronecine and heliotridine are diastereomers, with distinct orientation at position C-7 
[15]. 

 
Figure 2. Groups of PA, according to the necine base. 

Necic acids are aliphatic carboxylic acids that can be simple (angelic and tiglic acids), 
monocarboxylic acids with hydroxyisopropylbutanoic structures at C-7 (trachelantic and viridifloric 
acids) or dicarboxylic acids at C-8 or at C-10 (senecic and isatinecic acids) (Figure 3) [1]. 

The combination of the above-mentioned structures results in mono- or di-esters. Within the 
monocarboxylic acids, characteristic of the Boraginaceae family, some have a hydroxyl group at C-9 
esterified by a hydroxyisopropylbutanoic acid, such as intermedine (Figure 4) [1]. In cases where 
there is a second necic acid, it usually occurs in the hydroxyl group of C-7, in the form of angelic acid 
or tiglic acid, as in echimidine (Figure 5) [1]. Macrocyclic diesters, characteristic from Asteraceae 
family, have also been described, which correspond to C-7 and C-9 esterified by a dicarboxylic acid 
(Figure 6) [1]. Unusually, necines may be esterified with aromatic or arylalkyl acids [1]. 

According to the most widely accepted pathway, the biosynthesis of the pyrrolizidine core 
begins with a NAD+-dependent condensation of two molecules of putrescine. It should be highlighted 
that this initial step is disputed by some authors, which advocate the involvement of one molecule of 
putrescine and one molecule of spermidine, the latter providing the aminobutyl group [16–18]. 
Interestingly, it could be the case that both theories are correct, as suggested by the finding that 
bacterial homospermidine synthase is able to accept either putrescine and spermidine as a substrate 
[19]. Regardless of the initial step, in both cases the reaction is catalyzed by homospermidine synthase 

Figure 1. Structure of a PA and its different forms. R1 and R2 correspond to different necic acids.

Amino alcohols, or necines, are derived from pyrrolizidine. The pyrrolizidine core, comprising
two saturated five-membered rings with a nitrogen atom between them, sometimes displays a double
bond in the 1,2 position, which frequently results in enhanced toxicity [7]. They can also have a single
alcohol at C-1, a second alcohol in position C-7 (di-hydroxylated) and less often a third in C-2 or C-6
(tri-hydroxylated) [8–10]. Esterification can take place at C-7 and/or C-9 positions [9].

According to the structure of the necine base, PA may be sorted into four groups:
retronecine-, heliotridine-, otonecine- and platynecine-types (Figure 2) [11]. Retronecine-, otonecine-
and heliotridine-types are unsaturated bases, while platynecine-type is saturated [12,13]. From a
structural point of view, otonecine is the most distinct among all types, since it is oxidized at C-8
and displays a monocyclic ring, thus diverging from the other groups, which display a bicyclic
ring [8,10,14]. Retronecine and heliotridine are diastereomers, with distinct orientation at position
C-7 [15].
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Necic acids are aliphatic carboxylic acids that can be simple (angelic and tiglic acids),
monocarboxylic acids with hydroxyisopropylbutanoic structures at C-7 (trachelantic and viridifloric
acids) or dicarboxylic acids at C-8 or at C-10 (senecic and isatinecic acids) (Figure 3) [1].

The combination of the above-mentioned structures results in mono- or di-esters. Within
the monocarboxylic acids, characteristic of the Boraginaceae family, some have a hydroxyl group
at C-9 esterified by a hydroxyisopropylbutanoic acid, such as intermedine (Figure 4) [1]. In cases
where there is a second necic acid, it usually occurs in the hydroxyl group of C-7, in the form of angelic
acid or tiglic acid, as in echimidine (Figure 5) [1]. Macrocyclic diesters, characteristic from Asteraceae
family, have also been described, which correspond to C-7 and C-9 esterified by a dicarboxylic acid
(Figure 6) [1]. Unusually, necines may be esterified with aromatic or arylalkyl acids [1].

According to the most widely accepted pathway, the biosynthesis of the pyrrolizidine core begins
with a NAD+-dependent condensation of two molecules of putrescine. It should be highlighted
that this initial step is disputed by some authors, which advocate the involvement of one molecule
of putrescine and one molecule of spermidine, the latter providing the aminobutyl group [16–18].
Interestingly, it could be the case that both theories are correct, as suggested by the finding that bacterial
homospermidine synthase is able to accept either putrescine and spermidine as a substrate [19].
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Regardless of the initial step, in both cases the reaction is catalyzed by homospermidine synthase
and the result is the symmetrical intermediate homospermidine [1]. Subsequently, homospermidine
is cyclized to the corresponding iminium ion, which is reduced and cyclized to trachelanthamidine
and isoretronecanole (Figure 7A) [20].
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Regarding necic acids, they are mostly derived from L-valine, L-leucine, L-isoleucine
and L-threonine [20].

The formation of monocarboxylic acids with five carbon atoms, such as angelic, tiglic
and sarracinic acid, takes place through the metabolization of threonine, which in turn proceeds
from via α-ketobutyric acid, also called 2-oxobutanoic acid. The interaction between this compound
and pyruvate yields isoleucine [20].

With respect to senecioic, viridifloric and trachelanthic acids, the precursor involved is
valine, which suffers a conversion into these necic acids, via an acyloin reaction with activated
acetaldehyde [20].

In the case of dicarboxylic acids such as senecic acid, with ten carbon atoms (Figure 7B), cyclization
of the open-chain monocarboxylic acid diesters takes place [20]. The biosynthesis occurs in the roots,
where they are formed as PANO [21]. Afterwards, due to their high solubility in water, they are easily
transported to the aerial parts so they can be stored in cell vacuoles [21].

Concerning the chemical synthesis, there has been an immense amount of research conducted
on the partial and total synthesis of numerous naturally-occurring PA and related non-natural
analogues [22,23].
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3. Biological Activity of PA

3.1. Pharmacokinetics

Concerning PA pharmacokinetics, after oral ingestion these compounds are absorbed from
the gastrointestinal tract [25]. Most of them, around 80%, are excreted in urine, feces and milk, a few
being able to pass the placenta due to their high lipophilicity [25–27]. Bioactivation occurs mostly
in the liver and, for this reason, this organ is the most affected by toxicity [28]. Other organs have
been identified as targets, namely the lungs and kidneys [29]. The lung is the second most affected
organ by the pyrroles formed after metabolic activation in the liver, since they can travel to the lungs
through blood [29]. For PA to be excreted or exert toxicity, as with many xenobiotics, biotransformation
must occur.

There are three principal pathways for the metabolic activation of PA, namely hydrolysis to
produce necines and necic acids, N-oxidation to form PANO, and oxidation that leads to the formation
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of pyrrolic esters or dehydropyrrolizidine alkaloids (DHPA). Hydrolysis is an important detoxification
route, promoting the clearance of these compounds [14], as well as N-oxidation, which allows
the formation of PANO that can be conjugated for excretion. However, PANO can reverse back
into PA and suffer oxidation into DHPA [29]. This route is carried out mostly by cytochrome P-450
(CYP450) monooxygenases. In fact, the activity of these enzymes can partly explain the distinct
susceptibility of different species to PA [29]. The isoforms of CYP450 involved in the metabolism
leading to DHPA are generally CYP3A and CYP2B [30]. In the case of hydrolysis, liver microsomal
carboxylesterases are involved [30]. However, only retronecine-type and heliotridine-type PA are
capable of suffering N-oxidation, otonecine-type PA being unable to generate PANO owing to their
methylation in the nitrogen [14].

The balance between the formation of DHPA and the formation of detoxification compounds,
such as necines, necic acids and PANO, is also important in explaining the distinct susceptibility of
different species to these compounds [31].

The formation of DHPA happens through hydroxylation of the necine base at C-3 and C-8
positions, in the specific case of retronecine- and heliotridine-types [14]. In otonecine-type, an oxidative
N-demethylation is necessary [14]. After these highly reactive metabolites are formed, they can bind
to glutathione (GSH) to form GSH conjugates and in doing so, they can be eliminated [32], which is
the reason that conjugation to GSH is considered a detoxification route [32]. In the same way, pyrrolic
esters can bind to proteins and deoxyribonucleic acid (DNA) and, consequently, they can form adducts.
These metabolites can also suffer hydrolysis and be transformed in dehydronecines, which are also
toxic metabolites, but are less reactive than the previously mentioned form [32]. Figure 8 illustrates
the metabolism of PA.
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3.2. Pharmacological Properties

Despite the toxicity described in some experimental models, which will be discussed later,
PA exhibit an interesting spectrum of biological properties, which can be exploited in drug
discovery programs.

3.2.1. Anti-Microbial Activity

Many alkaloids have been described as effective anti-microbials, which is in line with the defensive
role of this class of secondary metabolites in plants [33].

In the specific case of PA, the anti-microbial activity of usaramine, monocrotaline
and azido-retronecine against some bacteria has been demonstrated [34]. Usaramine was
analyzed concerning its ability to inhibit biofilm formation in Staphylococcus epidermidis
and Pseudomonas aeruginosa. Although the mechanism of action of usaramine remained unclear,
it was possible to observe that it prevented the formation of biofilm by S. epidermis by about 50% at
1 mg/mL. However, no effect was detected in the formation of biofilm by P. aeruginosa. Furthermore,
monocrotaline and azido-retronecine demonstrated anti-Trichomonas vaginalis activity (concentrations
up to 1 mg/mL), being lethal to 70% and 85% of bacterial cells, respectively, while was devoid
of toxicity towards T. vaginalis. Interestingly, no detectable damage in vaginal epithelial cells was
found, a selectivity trait that may be relevant for the development of new drugs, such as topic
anti-microbial agents.

In another study, the effects of PA from Senecio jacobaea L. were investigated for their effect
on the growth of nine plant-associated fungi (five strains of Fusarium oxysporum, two of Fusarium
sambucinum and two of Trichoderma sp.) [35]. A PA mixture consisting of senecionine (12%),
seneciphylline (22%), jacobine (24%) and jaconine (24%) was highly effective, however high
concentrations were required, the effective range of each individual PA varying from 0.33 mM to 3.33
mM, the most sensitive fungus belonging to the Trichoderma genus.

3.2.2. Anti-Inflammatory Activity

The inflammatory process is a physiological response of the body in order to eliminate, neutralize
and/or destroy stimuli resulting from infection or tissue damage [36].

In inflammatory processes, the upregulation of inducible nitric oxide synthase as a consequence of
pro-inflammatory mediators, such as cytokines, results in increased levels of nitric oxide (·NO), which
plays an important role as a mediator in the inflammatory response [37]. Therefore, the regulation of
its production in tissues may be important for the treatment of inflammation.

In a study by Huang et al., six new PA and two that were already known were isolated
from Liparis nervosa (Thunb.) Lindl. and evaluated for their inhibitory capacity towards ·NO
production by lipopolysaccharide (LPS)-challenged RAW 264.7 macrophages. The new molecules
tested were nervosine I, nervosine II, nervosine III, nervosine IV, nervosine V, nervosine VI,
and the previously-described PA were lindelofidine and labumine. Overall, all molecules were
effective in this model, with IC50 values ranging from 2.16 to 38.25 µM [38].

Another study with the same cell line led to the conclusion that PA present in an ethanol
extract of the plant Heliotropium digynum (Forssk.) C. Chr inhibited the production of ·NO by
78% at 25 µg/mL [39]. In this work, the IC50 values found for heliotrine, heliotrine N-oxide,
7-angelyolsincamidine N-oxide and europine were 52.4, 85.1, 105.1 and 7.9 µM, respectively.

Crotalaburnine was evaluated for its activity against increased vascular permeability and oedema
induced by formaline, carrageenin, 5-hydroxytryptamine, dextran, bradykinin and prostaglandin [40].
This alkaloid was also tested against the formation of granulation tissues by cotton-pellet in rats. Its
effects were compared with the activity of different compounds known for their anti-inflammatory
properties, such as hydrocortisone [40]. Results showed that this PA was only efficient against acute
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edema induced by carrageenin and hyaluronidase, with a dose of 10 mg/kg [40]. In the cotton-pellet
granuloma test it was shown that crotalaburnine was two times more potent than hydrocortisone [40].

3.2.3. Anti-Cancer Activity

In 1992, researchers in the area of pediatric cancer treated 31 children with acute lymphoblastic
leukemia with indicine-N-oxide at two dose levels (2000 mg/m2/day and 2500 mg/m2/day) for 5
consecutive days [41]. Among the 12 patients treated with 2000 mg/m2/day, 1 achieved a complete
response after 6 months. On the other hand, of the 16 patients treated with 2500 mg/m2/day, 1 reached
a similar response after 1 month. The patient with chronic myelogenous leukemia displayed a partial
response in 4 months. These results suggested that indicine-N-oxide is active in the treatment of
acute lymphoblastic leukemia of children. However, it has a narrow therapeutic index and a very
steep dose response curve. At the doses tested, mild acute hepatotoxicity was registered. However,
the administration of doses ≥3000 mg/m2/day for 5 days caused severe hepatotoxicity. Another
study involving patients with ages between 4 and 67 years confirmed that indicine-N-oxide can induce
remissions in cases of acute and chronic leukaemia at the concentration of 3000 mg/m2 administered
daily for 5 days. In this study, only 1 out of 22 cycles of treatment resulted in liver failure [42].

In a study using different human cancer cell lines (cervical, breast, prostate and cervical squamous)
indicine N-oxide from Heliotropium indicum L. inhibited the proliferation of the previous referred
cancer cell lines, with IC50 values ranging from 46 to 100 µM [43]. At these concentrations, cell
cycle arrest at mitosis was detected, without noticeable changes in the organization of the spindle or
interphase microtubules.

3.2.4. Anti-HIV Activity

Polyhydroxylated PA have been described as capable of interacting with human
immunodeficiency virus (HIV) activity [44]. Australine and alexine, isolated from Castanospermum
australe A. Cunn. & C. Fraser ex Hook and Alexa Leiopetela Sandwith, are examples of these
polyhydroxylated PA that in concentrations between 0.1 and 10 mM inhibited, in distinct degrees,
the activity of glycosidases, particularly the nitrogen-linked glycosylation process of HIV [44]. This
event ultimately results in reduced cell fusion with the virions and, consequently, restricted syncytium
formation [45].

A study from Taylor et al. with alexine and other four PA isolated from A. leiopetala and C. australe,
respectively, also showed inhibitory activity against HIV-1 [46]. The positive results were obtained
with 7,7a-diepialexine and an IC50 of 0.38 mM was found. This anti-HIV activity was correlated with
the inhibition of pig kidney α-glucosidase 1 and the diminished cleavage of the precursor HIV-1
glycoprotein gp160.

3.2.5. Acetylcholinesterase Inhibitors

Acetylcholinesterase (AchE) is an enzyme that catalyzes the hydrolysis of acetylcholine (ACh)
and other esters that act as neurotransmitters [47]. It plays an important role in neural function and it
is mainly present in the synaptic gaps of central and peripheral nervous system, being responsible
for terminate nerve impulses [47]. Overstimulation of ACh receptors can lead to disorders like
depression. However, when present in low amounts, other diseases can manifest, namely Alzheimer
and Myasthenia gravis [47,48]. For this reason, inhibitors of this enzyme are exploited as therapeutic
targets [47].

Benamar et al. isolated four PA from Solenanthus lanatus DC., including a new one named
7-O-angeloylechinatine-N-oxide, together with 3′-O-acetylheliosupine-N-oxide, heliosupine-N-oxide,
and heliosupine [49]. All of these compounds inhibited AChE, with IC50 values between 0.53
and 0.60 mM. A more recent study, from the same author, with 7-O-angeloyllycopsamine-N-oxide,
echimidine-N-oxide, echimidine, and 7-O-angeloylretronecine isolated from Echium confusum Coincy
showed the inhibition of AChE, with IC50 values ranging from 0.275 to 0.769 mM [50].
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3.2.6. Miscellaneous

A work with the leaves and inflorescences from Senecio brasiliensis (Spreng.) Less., performed by
Toma et al. on mice and rats, shed a light on the possible use of PA in the treatment of ulcerogenic
disease and stomach pain [51]. The therapeutic doses of PA were assessed by the administration of
hydrochloric acid/ethanol to induce gastric ulcer. It was possible to perceive that the extent of the lesion
induced was significantly reduced by 32.9%, 42.5% and 66.8% with concentrations of 12.5, 25 and 50
mg/kg of PA extract (containing senecionine, integerrimine, retrorsine, usaramine and seneciphylline),
respectively. In the same work, a dose of 12.5 mg/kg of the same PA extract was shown to ameliorate
nonsteroidal anti-inflammatory drugs-induced gastric ulcer [51].

4. Toxicity

The toxicity of PA is largely documented [52,53], being almost exclusively associated to
their metabolites.

In 1968, Mattocks introduced what is now considered the main mechanism responsible for
the toxicity of PA, namely the binding of DHPA with groups containing sulphur, nitrogen and oxygen
present in proteins, to form adducts, such as 2,3-dihydro-1H-pyrrolizineprotein [53], mainly in the site
of formation [29]. Pyrroles can also penetrate the nucleus and react with DNA, ultimately causing DNA
cross-links and DNA-protein cross-links with abnormal functions, which will be the cause of damage,
mainly in the hepatocyte. They can pass to the adjacent Dissé space and into the sinusoidal lumen,
where they attack sinusoidal cells [29]. The injury caused by the toxic metabolites in hepatocytes
and in the walls of hepatic veins, for example, is what leads to veno-occlusive disease (VOD), called
nowadays hepatic sinusoidal obstruction syndrome (HSOS) [29].

After that, several studies have been conducted to add to the knowledge of this toxicity mechanism.
In a study by Lin et al., serum protein adducts were detected in a PA-induced HSOS patient for the first
time [54]. The authors developed an analytical approach based on liquid chromatography-mass
spectrometry (LC-MS) to study these adducts and have concluded that pyrrole-protein adducts could
be potential biomarkers of PA-induced HSOS. In this specific study, the observed HSOS were confirmed
to arise from the consumption of a PA-containing plant, Gynura segetum (L.) DC. Another study with
PA-induced liver injury led to the conclusion that pyrrole-protein adducts were present in the blood
of all the patients, further strengthening the case for their use as biomarkers for this kind of liver
injury [55].

A study by Zhu et al. showed that these adducts can also be used as a biomarker of liver
tumor formation [56]. As a result, they decided to carry a study to clarify the basic kinetics of
PA-derived DNA adducts, namely their persistence in vivo. The conclusion was that they can be
used to monitoring or predicting chronic liver diseases, since DHPA-derived DNA adducts have
sufficient stability and persistence. In the single-dose exposure, the PA-derived DNA adducts exhibited
dose-dependent linearity and persisted for up to 4 weeks. Following multiple dose treatment, they
persisted more than 8 weeks. In addition, they exhibit correlation with the progression of liver damage
caused. Another group achieved the same conclusion, with five hepatocarcinogenic PA (lasiocarpine,
retrorsine, riddelliine, monocrotaline and heliotrine) and their corresponding PANO [57]. All of them
being able to produce DNA adducts, through rat liver microsomal metabolism.

4.1. Acute and Chronic Intoxications

As previously mentioned, the liver is the main target of toxicity caused by PA, mainly because
bioactivation occurs mostly in this organ. VOD is the clinical manifestation most frequently found,
being considered a marker for PA intoxication [14]. The symptoms include vomiting, enlargement of
the liver and bleeding diarrhea [14].

PA intoxication can be acute, sub-acute and chronic, each of them presenting different symptoms.
Acute intoxication is characterized by hemorrhagic necrosis, hepatomegaly and ascites; in sub-acute
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there is a blockage of hepatic veins, which leads to HSOS (primary sinusoidal damage and parenchymal
cell dysfunction [58]) [59]. Chronic PA exposure is characterized by necrosis, fibrosis, cirrhosis
and proliferation of the bile duct epithelium [60,61]; liver failure and death is the highest level of this
toxicity [59].

4.2. Genotoxicity and Tumourigenicity

In 1954, Schoental et al. discovered that retrorsine was capable of inducing tumors in experimental
studies in animals [30,62]. Tumors developed in liver, lung, bladder, skin, brain, spinal cord, pancreas
and gastrointestinal tract were found [25]. All PA known to have this effect belong to heliotridine-,
retronecine- and otonecine-types.

The mechanism responsible for the formation of tumors was clarified by Yang et al., which
established that riddelline (retronecine-type) form DNA adducts, in the form of DHPA [63].
In addition, it was also demonstrated by other authors that the levels of DNA adducts induced
by DHPA were associated with the appearance of tumors, so they can be used as biomarkers of
the tumourigenicity caused by PA [64]. Besides the formation of DNA adducts, these compounds can
also react with proteins and trigger DNA cross-linking, sister chromatid exchange and chromosomal
aberrations [9,14,65].

Furthermore, PA were associated to skin cancer, since they can lead to photosensitization in
animals upon their consumption and metabolism [66]. It is thought that phylloerythrin, a porphyrin
derived from the damage of chlorophyll by microorganisms present in gastrointestinal tract, passes
to the circulation and is excreted by the liver into the bile. However, a PA-damaged liver is unable
to eliminate phylloerythrin, resulting in its accumulation in the blood and skin. In this case, when
phylloerythrin is exposed to sunlight, the resulting metabolites can cause oxidative stress and lipid
peroxidation in skin tissues and ultimately trigger the formation of tumors [66].

We were unable to find any reports of cancer cases in humans as a direct consequence of PA
consumption. However, it has been shown before that the metabolism of riddelline in human liver
microsomes is similar to that of rodents, including the formation of DNA adducts [67]. Since this PA
induces liver tumors in rodents via formation of DNA adducts, it is plausible to conclude that this PA
may also be genotoxic and tumorigenic to humans [67]. In fact, the National Toxicology Program in
the United States has declared that riddelliine is “reasonably anticipated to be a human carcinogen” [68].

The potential role of PA in diseases such as cancer, pulmonary hypertension, congenital anomalies
and liver diseases has been reviewed before [69]. These alkaloids are genotoxic and can slowly initiate
diseases of this sort, which is problematic because clinicians are unware of PA dietary exposure.
The authors defined six indicators that can suggest a dietary dehydroPA etiology, appointing, for
example: “cirrhosis, especially if associated with HSOS and/or accumulation of copper in the liver”
and “cancers and/or congenital anomalies where there is evidence of overt or asymptomatic HSOS,
pulmonary arterial hypertension (PAH), bone deformities, or immunological deficiencies”. If several
of these indicators are present, the authors affirm that it is possible that a dietary exposure to PA is
involved in the disease etiology.

4.3. Other Types of Toxicity

Lungs can also be a target of injury, since DHPA can travel from the liver into pulmonary arterioles,
producing damage similar to the VOD [70]. After reaching this organ, thrombi in vessels and thickening
in their walls leads to occlusion and inflammation [29]. Overall, the combination of these phenomena
ultimately trigger pulmonary hypertension and subsequent congestive heart failure [29]. In a study
by Culvenor et al. carried out on hooded Wistar rats, it was demonstrated that PA can elicit lung
lesions, as result from low-level (0.025 mmoles/kg body weight) and long-term exposure to PA [71].
Two types of lung lesions were observed: intravascular accumulation of mononuclear cells ultimately
resulting in venous occlusion, and extravascular alteration, in which the alveolar septa were thickened,
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and the number of cells increased. The authors also concluded that rats developing lung lesions always
presented chronic liver lesions.

Neurotoxicity was also reported as a part of the poisoning by these substances, particularly by
tricodesmine, including symptoms like encephalitis, characterized by vertigo and headaches, which
could progress to delirium and loss of consciousness [70]. At the central nervous system, necrotic
lesions have been described [72].

There are also reports of teratogenicity in the literature, justified by the fact that some PA can
pass the placenta, as referred above. For example, a case of hepatic VOD in a newborn of a woman
who consumed herbal tea prepared from Tussilago farfara L. was described [73]. Also, in Australia,
the consumption of Senecio madagascariensis Poir. by a mare was reported to lead to hepatic failure in a
foal of two months [74].

A study with clivorine isolated from Ligularia hodgsonii Hook, in concentrations between
10 and 100 µM, showed that this PA can induce DNA fragmentation, compatible with apoptosis,
in human foetal hepatocyte line and mouse hepatocytes, with IC50 of 40.8 µM [75,76].

4.4. Chemical and Biological Aspects That Influence the Toxicological Profile

The structural basis for the toxicological effects of PA have been described in some works.
The presence of the 1,2 double bond, as found in retronecine-, heliotridine- and otonecine-types, has
been associated with the toxic effects of PA [52], as well as the presence of one or two hydroxyl groups
attached to the pyrrole ring [29]. Several studies also suggest that the presence of a methyl group at C-1
is relevant, as is the presence of two esterified groups and branching in at least one of the carboxylic
acids [29]. For this reason, PA that exert the highest toxicity are cyclic diesters, monoesters being
the ones that cause the lowest level of injuriousness; between them are the open-chain diesters, which
cause an intermediary toxicity [25]. The existence of relationship between the esterification level
and the toxicity has been suggested, as, for example, macrocyclic DHPA were revealed to be more
toxic than open chain diesters [28].

Toxicity of PA can be influenced by age and gender, since members of masculine sex are a
group of risk, as well as children and fetuses, which are the most vulnerable group [59]. There are
also toxicological differences between distinct PA within a species and of the same PA in different
species [77].

PA poisoning is exacerbated with bacteria and metals. A study from Yee et al. showed that
the simultaneous exposure to low doses of monocrotaline, which would not normally cause damage,
and LPS elicited hepatotoxicity [78]. In this case, centrilobular and midzonal liver lesions were
registered. Aston et al. studied the impact of a copper-rich diet in PA toxicity [79]. The results showed
that retrorsine and copper together led to a more serious liver damage than retrorsine alone, a result
that was confirmed in another work [80].

5. Human and Animal Consumption of PA

5.1. Legal Framework

With the increasing consumption of herbal medicines, PA poisoning has begun to be regarded as
a public health problem. Consequently, some countries established regulations about PA in foodstuff.
In the United States of America, the Food and Drug Administration ordered the ban of all PA-containing
comfrey preparations from the market [81]. The German Federal Department of Health restricted
the use of these preparations to 6 weeks and in a level of less than 1 µg/day; if the use was prolonged
in time, the daily limit should be reduced to 0.1 µg [82]. Another regulation implemented was
the labeling of these products with the following statement: “Not to be used in pregnancy and during
the lactation period.”, due to the susceptibility of fetuses and children to diseases instigated by PA [82,83].
In the European Union, the European Food Safety Authority (EFSA) determined that the ingestion of
toxic PA induces VOD and that they have carcinogenic effects in rodents [84]. In 2011, EFSA concluded
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that no tolerable daily intake could be established. They followed the margin of exposure (MOE)
approach, a “ratio of two factors, which assesses for a given population the dose at which a small but
measurable adverse effect is first observed and the level of exposure to the substance considered”.
The MOE defined was of 1:10,000 for an exposure of 7 ng/kg of body weight per day. As an example,
for a 70 kg individual, this corresponds to a daily exposure of approximately 500 ng of PA [85].
The European Medicines Agency, based on toxicological considerations and the available guidelines
for assessment/management of genotoxic carcinogens, also showed concern about the hazards of
PA, recommending a maximum daily intake of 0.35 µg PA/day for a person with a body weight of
50 kg and life-long exposure [86]. Austria excluded all products with PA from the market, and in
the Netherlands, all foodstuff, herbal preparations, and extracts of plants known to have PA were
limited to 1 µg/kg or 1 µg/L in the ending product [87].

Risk assessments of PA are based on animal studies and, for this reason, different approaches
were suggested to translate animal doses to human exposure risks. Guidance documents have been
developed taking into account differences between species that can influence the toxicity, namely
the metabolic pathways [88,89]. Some groups reviewed the relevance of animal models to predict
the effects of PA in humans [90]. The findings highlight that direct comparison between animal
and human results is not always possible. For example, the PA-induced tumourigenicity previously
reported for animals has not, to this day, been demonstrated in humans. Anyway, it is still an open
question whether the differences between species should exclude the results in animals for quantitative
risk assessment in humans [91].

As extracted from the conclusions drawn by the several risk assessment authorities, there is no
consensus in the PA daily intake limit, although they all concur that PA are a class of undesirable
compounds in food. For this reason, quality control of foodstuffs is pivotal and can be important for
establishing legally binding limits. The first step should be the choice of an appropriate and universal
analytical method for PA, as it was requested by EMA to the European Pharmacopeia [91]. As far as
we could determine, this is being undertaken at the moment [92].

5.2. Data from Literature

Due to the presence of PA in several species relevant for human and animal nutrition, they
may pose a threat to human health through their presence in herbal teas, herbal medicines, dietary
supplements, vegetables, cereals, wheat grain, honey and pollen [93–98]. Cases of intoxication by
contaminated cereals, teas, and salads have been extensively reported [97,99,100].

In 1903, it was recognized by Gilruth that tansy ragwort (S. jacobaea) produced chronic liver disease
in cattle [101,102]. Afterwards, in 1956, a study by Bull and Dick showed that species from Crotalaria
spp. led to comparable diseases [103]. A serious outbreak with the consumption of bread made from
wheat contaminated with seeds of Heliotropium sp. plants, which contain PA, happened in Afghanistan,
in 1974–1975 [104]. The patients exhibited ascites and emaciation, typical of hepatic VOD. Equally, in
Tajikistan (1993), an epidemic was observed involving wheat contaminated by Heliotropium lasiocarpum
Fisch. & C.A.Mey. As consequence, 3906 cases of liver diseases were registered, leading to over 60
deaths [105].

In 1989, the International Program on Chemical Safety, an agency of the World Health
Organization and Food and Agriculture Organization, published the “Pyrrolizidine Alkaloids Health
and Safety Guide” [83]. This guide contained statements about the hazards for humans and animals
and the confirmation that contaminated grain, herbal medicines, beverages, foodstuff or grazing with
PA could cause acute or chronic illness [83].

PA poisoning was initially a problem, mainly in developing countries, as result of the use of
traditional medicines containing PA (Table 1) [100]. However, in the last years, there has been a
growing focus on this type of medicine in industrialized countries, thus making this problem a wider
concern [100]. In Europe, chronic toxicity due to long-term consumption of food or herbal medicines
containing these alkaloids is now a reality [106].
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Table 1. Medicinal species containing PA [17,20].

Family Plant Reference

Apiaceae Foeniculum vulgare Mill.; Pimpinella anisum L.; Carum carvi L. [107]

Apocynaceae Amphineurion marginatum (Roxb.) D. J. Middleton; Alafia cf.
caudata Stapf [108]

Asteraceae

Eupatorium cannabinum L.; Adenostyles alliariae (Gouan) Kern;
Emilia sonchifolia (L.) DC.; Petasites hybridus (L.) PH Gaertn., B.

Mey & Scherb.; Petasites spurius (Retz) RCHB; S. jacobaea;
Senecio vulgaris L.; T. farfara; Senecio nemorensis L.; Ageratum
conyzoides L.; Chromolaena odorata (L.) R. M. King & H. Rob.;

Eupatorium chinense L.; Eupatorium fortunei Turcz.; Eupatorium
japonicum Thunberg ex Murray.; Cacalia hastata L.; Cacalia

hupehensis Hand.-Mazz.; Crassocephalum crepidioides (Benth.) S.
Moore; Farfugium japonicum (L.) Kitam.; Gynura bicolor (Roxb.
ex Willd.) DC.; Gynura divaricata (L.) DC.; G. segetum; Ligularia

dentata (A.Gray) Hara; Petasites japonicus (Siebold & Zucc.)
Maxim.; Senecio argunensis Turcz.; Senecio integrifolius (L.)
Clairv.; Senecio scandens Buch.-Ham. Ex D. Don; Syneilesis

aconitifolia (Bunge) Maxim.; Matricaria chamomilla L.; Gynura
pseudochina (L.) DC.; Gynura japonica (Thunb.) Juel; Packera

candidissima (Greene) W. A. Weber & Á. Löve; Solanecio mannii
(Hook.f.) C. Jeffrey; Solanecio tuberosus (Sch. Bip. ex A. Rich.) C.
Jeffrey var. tuberosus; Bidens pilosa L.; Senecio longilobus Benth.

[60,107,109–118]

Boraginaceae

Alkanna tinctoria (L.) Tausch; Anchusa officinalis L.; Borago
officinalis L.; Cynoglossum officinale L.; Heliotropium arborescens
L.; Lithospermum officinale L.; Myosotis scorpioides L.; Symphytum

asperum Lepech; Symphytum caucasicum Bieb.; Symphytum
officinale L.; Symphytum tuberosum L.; Symphytum × uplandicum
Nyman; Arnebia euchroma (Royle) I. M. Johnst.; Cordia myxa L.;

Cynoglossum amabile Stapf & J. R. Drumm; Cynoglossum
lanceolatum Forssk.; Cynoglossum zeylanicum (Vahl) Brand;

Cynoglossum grande Dougl. ex Lehm.; Cynoglossum virginianum
L.; Arnebia benthamii (Wall. ex G.Don.) Johnst.; H. indicum;

Lappula intermedia (Ledeb.) Popov; Lithospermum erythrorhizon
Siebold & Zucc.

[119–123]

Fabaceae
Crotalaria albida Roth; Crotalaria assamica Benth.; Crotalaria

pallida Aiton; Crotalaria sessiliflora L.; Crotalaria
tetragona Andrews

/

Lamiaceae Melissa officinalis L. [107]

Orchidaceae L. nervosa /

Urticaceae Urtica dioica L. [107]

Several studies on food chemistry and food safety have shown that many of the foodstuff
currently consumed are sources of this type of alkaloids. A recent study from Mulder et al. showed
that the contamination of eggs and meat products with PA seems to be rare in the European Union [124].
Nevertheless, PA are sometimes found in milk, albeit in very low concentrations, since milk suffers
from extensive processing, during which these compounds are diluted [124]. The class of PA found in
milk revealed that Senecio spp. and species from the Boraginaceae family could be the origin of their
occurrence [124].

In the last few years it has been reported that even herbal teas and teas not prepared from
plants known to have PA in their composition, such as M. chamomilla and Mentha × piperita L., can
have high amounts of these compounds, as consequence of cross-contamination [107,125]. When
studying the distribution of PA in herbal teas, namely green, black, peppermint, rooibos, chamomile
and one mix of herbs, it was observed that the most frequent was the senecionine-type (senecionine-,
retrorsine-, seneciphylline-, senecivernine-N-oxides and their respective free bases) [124]. Lycopsamine-
and heliotrine-types were less frequently found, intermedine being the most common, followed
by lycopsamine-N-oxide and heliotrine-N-oxide [124]. The highest average concentration was
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from senecionine-N-oxide (1.73 µg/L and 64% frequency), followed by retrorsine-, seneciphylline-,
senecivernine-N-oxides and the corresponding free bases [124]. Together, these PA accounted for 76%
of total PA content found in herbal teas; lycopsamine- and heliotrine-types accounted for 24%, while
monocrotaline-type was not present [124]. Moreover, PANO were found in higher concentrations than
the corresponding free bases. High amounts of PA were also revealed in tea, namely in black and green
tea from retail market, an unexpected finding [124]. As described before, different chemical types were
identified, open-chain diesters being mainly perceived in fennel (F. vulgare) infusion and cyclic PA in
black tea [107].

Concerning food supplements, the samples analyzed were often contaminated with PA, being
the amounts highly variable [124]. The analysis was made considering three types of food supplements:
supplements based on plants not known to produce PA (Valeriana officinalis L., Hypericum perforatum
L.), supplements based on plants known to produce PA (B. officinalis, Eupatorium perfoliatum L.,
Eupatorium odoratum L., L. officinale, Pulmonaria officinalis L., S. officinale, Petasitis sp., P. hybridus,
T. farfara), supplements containing bee products (pollen, propolis and royal jelly). Food supplements
made from plant material known for their content in PA revealed the highest PA levels, those from
lycopsamine-type (lycopsamine, intermedine, echimidine) being the more common [124]. However,
the supplements made from plants not known to produce PA similarly demonstrated to have these
compounds, probably due to cross-contamination. Supplements made of oil-based extracts of
PA-producing plants were devoid of PA, whereas the presence of PA in supplements containing
bee products was also confirmed [124].

Several studies have shown that the distribution of PA subclasses varies with the vegetal
material [126]. For example, while pollen is richer in seneciphylline-type, in flower heads retrorsine-
and usaramine-types are more common [126].

Among the several food products that can harbor these toxins, honey is one of the most studied
and important [126–128]. PA have been found in honey from various botanical and geographical
origins [129]. Senecionine, echimidine and lycopsamine, in particular, were present in Echium spp.
honey samples coming from Spain [130]. Considering the concentrations found by Kempf et al. in
honey samples (0.019–0.120 µg/g) and that a common dose is 1 or 2 table spoons per day (10–20 g), it
is possible to conclude that a honey consumer can easily exceed the recommended limit: maximum
of 1.0 µg of PA per day [129,131–135]. A study from Lucchetti et al. [127] revealed the presence
of PA in nectar from Echium vulgare L. Echimidine corresponded to half of the PA content found
and acetylechimidine, vulgarine, echiuvulgarine and acetylvulgarine were the other half. They also
concluded that pollen frequently exhibited higher levels of PA than nectar, but the proportion of
the diverse types of these compounds found in honey was more closely related to that found in nectar
compared to that present in pollen. For this reason, there are some doubts about the origin of these
toxins in honey, since it is composed by nectar, but also contains traces of pollen.

PA-containing plants known to be used in the production of honey can be found in Table 2.
Studies with pollen from S. vernalis revealed that PA-free honey can be contaminated when this

pollen is added to it, probably by diffusion from pollen to honey [93]. For some authors, it was also
clear that pollen contained much higher levels of PA than honey and that pollen appeared in it at
low doses [126]. However, a study showed the opposite, specifically that a relationship between
the concentration of pollen in the honey and its PA levels is not always found, since honeys with
considerable amounts of PA on their composition are revealed to have low levels of pollen [129].
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Table 2. Plants containing PA used in the production of honey in several countries.

Country Plant Reference

Argentine Senecio grisebachii Baker [136]

Australia Echium plantagineum L.; E. vulgare; Eucryphia lucida (Labill) Baill;
Heliotropium amplexicaule Vahl; Heliotropium europaeum L. [131]

Brazil C. pallida; Eupatorium sp. [137,138]

Bulgaria T. farfara [139]

China E. plantagineum; E. vulgare; Senecio spp.; C. officinale; Tussilago spp. [140]

Ethiopia Solanecio angulatus (Vahl) C. Jeffrey [109]

Germany E. vulgare; Phalaenopsis sp.; S. jacobaea; Senecio vernalis Waldst. & Kit. [126]

Ghana C. odorata; Eupatorium spp.; Ageratum spp. [141]

India Crotalaria juncea L. [76,142]

Italy Echium sp.; Senecio erucifolius L.; Senecio inaequidens DC; S. jacobaea; S.
vulgaris; Robinia pseudoacacia L. [143–145]

New Zealand E. vulgare; B. officinalis; Echium spp. [134,140]

Portugal Echium sp. [143]

South Africa S. inaequidens; Senecio pterophorus DC [143,145]

Spain E. plantagineum; E. vulgare [135]

Switzerland E.vulgare; Eupatorium sp.; Senecio sp. [140,146]

Thailand E. odoratum [147]

Turkey Myosotis sp. [148]

United Kingdom Borago sp.; S. jacobaea [140,149]

United States C. officinale; E. vulgare; S. jacobaea; S. vulgaris; S. officinale [150,151]

Uruguay E. plantagineum [152]

6. Conclusions

PA are a widespread group of secondary metabolites that can, in certain situations, pose a life
threat to humans and animals, once they are present in a variety of foodstuff. These compounds have
became known for their toxicity, as per several outbreaks that were registered, mainly in developing
countries. However, in the last years, industrialized countries began to face this reality, when the use
of traditional medicines increased. Despite this, some PA can also be useful, since they demonstrate
pharmacological properties which can be further exploited by relying in medicinal chemistry strategies
that can maintain bioactivity while reducing toxicity.

Thereby, for the sake of human and animal health protection, it is of great importance to further
develop the information regarding the chemistry, pharmacology and toxicology of PA.
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AChE Acetylcholinesterase
ACh Acetylcholine
CYP 450 Cytochrome P450
DHPA Dehydropyrrolizidine alkaloid(s)
DNA Deoxyribonucleic acid
EFSA European Food Safety Authority
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GSH Glutathione
HSOS Hepatic sinusoidal obstruction syndrome
HIV Human immunodeficiency virus
LPS Lipopolysaccharide
MOE Margin of exposure
·NO Radical nitric oxide
PA Pyrrolizidine alkaloid(s)
PANO Pyrrolizidine alkaloids N-oxide(s)
VOD Veno-occlusive disease
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