م/ اجتماع اللجنة العلمية لفرع الكيمياء الصيدلانية

اجتمعت اللجنة العلمية في فرع الكيمياء الصيدلانية في يوم الاحد الموافق 2025/10/13 لتقييم وصف البرنامج الاكاديمي للدراسات العليا ووصف المقرر الدراسي للعام 2025-2026، حيث تم إقرار كلا البرنامجين

ام د محمد حسن محمد

رئيسا

ا.م.د. اياد عبد علي جياد

عضوا

ا.م.د. محمد كامل هادي

عضوا

م.د. سارة ستار جبار

عضوا

ا.م. تغريد عمر نظام الدين

عضوا

No	Name	Chapter	References	Department
1	Advanced Pharmaceutical Chemistry I	Protein structure and function: The primary structure of proteins The secondary structure of proteins The tertiary structure of proteins The quaternary structure of proteins Translation and post-translational modifications Proteomics Protein function Enzymes: structure and function: Enzymes as catalysts How do enzymes catalyse reactions? The active site of an enzyme Substrate binding at an active site The catalytic role of enzymes Regulation of enzymes Isozymes Enzyme kinetics Receptors: structure and function: Role of the receptor Neurotransmitters and hormones Receptor types and subtypes Receptor activation How does the binding site change shape? Ion channel receptors	An Introduction to Medicinal Chemistry, 5 th .ed Graham L. Patrick	Pharmaceutical Chemistry

- Kinase-linked receptors
- Intracellular receptors
- Regulation of receptor activity
- •Genetic polymorphism and receptd

Receptors and signal transduction

- Signal transduction pathways for G-protein-coupled receptors
- Signal transduction involving Gproteins and adenylate cyclase
- •Signal transduction involving Gproteins and phospholipase C
- Signal transduction involving kinase-linked receptors

Nucleic acids: structure and function

- Structure of DNA
- Ribonucleic acid and protein synthesis
- Genetic illnesses
- Molecular biology and genetic engineering

Enzymes as drug targets

- •Inhibitors acting at the active site of an enzyme
- Inhibitors acting at allosteric binding sites
- Uncompetitive and noncompetitive inhibitors
- Transition-state analogues: renin inhibitors
- Suicide substrates
- •Isozyme selectivity of inhibitors
- Medicinal uses of enzyme inhibitors
- Enzyme kinetics

No	Name	Chapter	References	Department
2	Advanced Pharmaceutical Chemistry II	Receptors as drug targets: Introduction The design of agonists The design of antagonist Partial agonists Inverse agonists Desensitization and sensitization Tolerance and dependence Receptor types and subtypes Affinity, efficacy, and potency Nucleic acids as drug targets: Intercalating drugs acting on DNA Topoisomerase poisons: non-intercalating Alkylating and metallating agents Chain cutters Chain terminators Control of gene transcription Agents that act on RNA Miscellaneous drug targets: Transport proteins as drug targets Structural proteins as drug targets Biosynthetic building blocks as drug targets Biosynthetic processes as drug targets: Biosynthetic processes as drug targets: Protein—protein interactions Lipids as drug targets Carbohydrates as drug targets	An Introduction to Medicinal Chemistry, 5 th .ed Graham L. Patri	Pharmaceutical chemistry

Drug discovery: finding a lead: Choosing a disease Choosing a drug target Identifying a bioassay Finding a lead compound •Isolation and purification Structure determination Herbal medicine Drug design: optimizing target interactions: Structure—activity relationships •Identifi cation of a pharmacophore Drug optimization: strategies in drug design Drug design: optimizing access to the target: Optimizing hydrophilic/hydrophobic properties Making drugs more resistant to chemical and enzymatic degradation • Making drugs less resistant to drug Targeting drugs Reducing toxicity Prodrugs Drug alliances • Endogenous compounds as drugs Peptides and peptidomimetics

in drug design

Oligonucleotides as drugs

No	Name	Chapter	References	Department
3	Advanced Heterocycli c Chemistry	Benzopyridines (quinoline, isoquinoline) Benzopyrone (coumarin, Chromone) Indoles Benzimidazole Benzothiazole Benzo-oxazole Purines Pyrimidines	Louis-DQuin-John- Tyrell-Fundamentals- of-Heterocyclic- ChemistryImportance in-Nature-and-in-the- Synthesis-of- Pharmaceuticals JohnA.Joule,KeithMil ls Heterocyclic_Chemis try_Fifth_Edition	Pharmaceutical chemistry

No	Name	Chapter	References	Department
		Basic Principles of Chirality	E.L. Eliel, Samuel. H., Wilen. John Wiley & Sons	
		Stereogenic Centers and Nomenclature		
		Diastereomers		
		Chirality without stereocenters		Pharmaceutic
4	Advanced Organic Chemistry III	Optical Activity		
		Reactions involving stereoisomers		al chemistry
		Asymmetric synthesis		
		Drug chirality and biological activity		
		Stereochemistry and drug metabolism		
		Stereoselectivity in pharmacokineti		

N o	Name	Chapter	References	Department
5	Bio-organic Mechanism	Introduction of Bio-organic mech. Coenzyme Chemistry Transaminases enzymes Racemases and decarboxylases enzymes Enzymes of Side Chain Cleavage Reaction Enzymes of Glycogenolysis Oxidoreduction enzymes Electron Pushing and Mechanisms Introduction to Bioorganic chemistry DNA structure DNA bioorganic properties DNA synthesis and targeting Flipped teacher		Pharmaceutical chemistry

No	Name	Chapter	References	Department
		Hit Identification to Lead Optimization	Drug Design And	
		SAR exploitation		
	Drug Discovery and Development	Biologically useful chemical space		Pharmaceutical
6		Substituent Groups and their Effects		Chemistry
		The Role of Functional Groups in Drug-Receptor Interactions		
		Physicochemical and Biopharmaceutical Properties of Drug Substances and Pharmacokinetics	Bevelopment	

الماجستير

Quantitative Structure – Activity Relationship:

Graphs and equations, Physicochemical properties, Hydrophobicity, The partition coefficient (P), The substituent hydrophobicity constant (π) , P versus π , Electronic effects, Steric factors, Taft's steric factor (Es), Molar refractivity, Other physicochemical parameters Hansch equation, The Craig plot, The

Hansch equation, The Craig plot, The Topliss scheme, Bioisosteres

Molecular Docking and Virtual Screening Techniques:

Flexible Docking, Rigid Docking, Scoring Functions, Validation of Molecular Docking, Molecular Docking and Structure-Based Drug Design, Virtual Screening, Analysis of Docking Results, Success and Limitations

Role of ADMET Tools in Current Scenario: Applications and Limitations:

ADMET Parameters and their Role, Importance of ADMET, ADMET Prediction, Strategies for the Designing of ADMET Model, Calculation of Physicochemical Parameters or Descriptor Values, ADMET Tools, Challenges in Present Scenario and Future Prospective.

Database Resources for Drug Discovery: Database searches

Discovery: Database searches considering required parameters for biological activity can find molecules suitable for further studies to achieve the desired activity. A huge amount of chemical information is available in

public domain databases for use by researchers.

Molecular Dynamics Simulation of Protein and Protein-Ligand

Complexes: Molecular Dynamics Simulation is a computational tool that deals with the study of molecules when they are in motion (as they are dynamic in nature) to understand how drug molecules interact with protein when the protein is in motion. As the stability of drug binding can be assessed.

Machine Learning Approaches to Rational Drug Design:

Artificial Intelligence (AI) mimics human behavior by simulating human intelligence by computer techniques. Machine Learning (ML) is a subfield of AI, uses statistical methods for learning.

ML exploits the relationship between a biological activity and chemical structure during drug design.
Computational technologies and ML algorithms have revolutionized drug discovery in the pharmaceutical industry.

Integration of ML algorithms in an automatic manner—to discover new compounds by analyzing, learning, and explaining pharmaceutical big data—is the application of AI to drug design.

No	Name	Chapter	References	Department
		Overview / Electron Pushing	Textbook: 1- AF. A. Carey	
		Protecting Groups	and R. J. Sundberg Advanced	
		Oxidation Reactions	Organic Chemistry	
		Reduction Reactions	(5th edition) Part B (Reactions	
		Enolate Chemistry	and Synthesis).	
		Organometallic Reactions	2- Organic Synthesis, MICHAEL B.	
2	Organic Synthesis	Olefin Synthesis	SMITH, 3 rd edition.	Pharmaceutical
		Ring-forming Reaction	3- F. A. Carey and R. J. Sundberg	chemistry
		Retrosynthetic Analysis	Advanced Organic Chemistry (5th edition) Part B (Reactions and Synthesis). Organic Synthesis, MICHAEL B. SMITH, 3rd edition	

No	Name	Chapter	References	Department
3	Advanced Spectroscopy	Violet and visible: Basics of spectrum and its propertiesIts quantitative and qualitative applications - Students will be able to interpret UV spectra to identify and characterize molecular structures and functional groups. Students will learn how to perform quantitative analysis using UV spectroscopy, including concentration determination and method validation. Students will be able to apply UV spectroscopy techniques in the fields of Miscellaneous, such as medicines, environmental analysis, And materials science Woodward-Visser rules provide A systematic approach to estimate the maximum wavelength (λmax) of conjugated organic compounds By taking structural features And alternative aggregates are taken into account. Considered These rules are a valuable tool in chemistry Organic to predict ultraviolet absorption properties. IR spectroscopy: It is used to identify functional groups in molecules. Infrared spectroscopy measures the vibrations of atoms, and based on that, it is possible to determine functional groups and whether there is a sequence or group that pushes or pulls electrons and the extent of its	Textbook: 1-spectrometric Identification of Organic Compounds, Robert M. Silverstein: 8th edition. 2- Introduction to Spectroscopy; Pavia, Lampman, Kriz, Vyvyan; 5th edition) Electronic References, Websites Various scientific websites	Pharmaceutical chemistry

impact on the spectroscopic measurement.

1H-NMR spectroscopy , 13C-NMR spectroscopy, 2D-NMR spectroscopy

Basics of spectrum and its properties and its applications. Nuclear magnetic resonance (NMR) technology is a dominant technique for determining the molecular structure, content, and purity of a sample. It is necessary to study the characterization of the polymer structure. NMR relies on electrically charged nuclei, and many nuclei have a nuclear spin (I) that makes them behave like magnets. This is the general principle. It will also be used in medicine to diagnose tumors. Scientists have also developed it so that it is suitable for studying and diagnosing nerves and the brain. The use of this method is also increasing in engineering and geological sciences. The use of 2D-HNMR also facilitates the knowledge of the presence of isomers such as S, R or tautomerism, as well as the very accurate identification of the compound.

Mass Spectrometry:

Basics of spectrum and its properties Its applications are that it is an analytical technique to determine the components of a substance or molecule. It is also used to elucidate the chemical structures of molecules, such as peptides and other chemical compounds.

No	Name	Chapter	References	Department
4	Advanced Organic Chemistry II	Types of bonding: Localized chemical bonding. Delocalized chemical bonding, includes:Aromaticity, Hyperconjucation, and tautomerism Chemical Links: "Bonds weaker than covalent bonds include: hydrogen bonds and additive compounds. Stereo-chemistry: Stereochemistry includes: stereo-isomers, optical isomers, optical activity, specific rotation,formation,diastereoisomer s, racemic modifica-tions and their formation, solution of racemic modification, asymmetric synthesis, and geometric isomers. Carbocations: nomenclature, stability, structure investigation, generation and reactions Carbanions ion: nomenclature, stability investigation of structure, generation and interactions Carbenes ability, in : nomenclature, stability, investigation of structure, generation and interactions Free radicals: nomenclature, stability, structure investigation, generation and interactions Nitrenes: nomenclature, stability, investigation of structure, generation and interactions Nitrenes: nomenclature, stability, investigation of structure, generation and interactions	Chemistry, Reactions	