Preparation \& Standardization of 0.1 N Hicl Solution

Assistant Lecturer

Sahar Mohammed Shakir
Assistant Lecturer
Rana Adel Kamoon
Assistant Lecturer
Mohammed Abdul-A

A reagent bottle of concentrated HCl has the following informations on it's lable:

$$
\begin{gathered}
\text { Molar mass }=36.5 \mathrm{~g} \cdot \mathrm{~mol}- \\
\text { sp.gr }=1.18 \\
37 \% \mathrm{HCl}(w / w)
\end{gathered}
$$

How could you prepare: 1 L of $0.1 \mathbb{N}$ HCl solution from this conc. HCl ?

1- Calculation of the Normality of the concentrated HCl :

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{HCl}}=\frac{\text { Specific gravity } * \%(w / w)^{*} 1000}{\text { Eq.mass of } \mathrm{HCl}} \\
& \mathrm{~N}_{\mathrm{HCl}}=11.961 \mathrm{~N}
\end{aligned}
$$

2 - Calculation of the volume of 11.961 N HCl that

 should be taken to prepare 1 L of 0.1 N HCl soln.```
N
 11.961* V V = 0.1 * 1000
 V
 the mark with distilled water in a }1000\textrm{ml}\mathrm{ volumetric flask.
```



## Standardization of the prepared HCl solution

If the chemical is available in a pure state, e.g. anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, weigh out an exact quantity, dissolve it in water up to volume.


How could you prepare 0.5 L of 0.1 N $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ? Knowing that, atomic masses of $\mathrm{Na}=23, O=16$ and $C=12$.

Substances which are not usually obtained in a pure state , e.g. mineral acids and caustic alkali, are prepared as approximate solutions and standardized against a known pure std., e.g. Na 2 CO 3 as a primary std. soln.

## Brocechuen

1- Fill the burette with the prepared HCl soln.
2- Transfer 10 ml of exactly $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ( $1^{\circ}$-standard ) in to a conical
 flask by using a 10 ml bulb pipette.

3 - Add 2 drops of methyl orange as indicator. Yellow color is obtained.


4- Titrate with HCl soln. drop by drop from the burette in to the conical flask until a faint orange color is obtained.


5 - The exact normality can be calculated from the following equation,

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& \mathrm{~N}_{1} * \mathrm{~V}_{1}{ }_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\mathrm{N}_{2} * \mathrm{~V}_{2}
\end{aligned}
$$

## Directions for reading a burette:

1- Hold an opaque card or a piece of paper behind the gradua tions.

2- Avoiding a parallax . In reading volumes, the eye must be at the level of the liq-
 uid surface to avoid an error due to parallax.

3- It is common practice to use the bottom of the meniscus as the point of reference in calibrating and using volumetric equipment.

## What is the reading of this burette ?

A. 21.20 ml
B. 21.30 ml
C. 22.60 ml
D. 22.70 ml


Encircle
the letter that represents the right position in reading a burette .


## Post Lab Exercise:

A bottle of concentrated HCl has the following informations on it's label: molar mass is $36.5 \mathrm{~g} / \mathrm{mol}$, sp.gr. 1.18 and $40 \% \mathrm{HCl}(w / w)$.
a- What is the normality of the HCl in the bottle? b- How could you prepare 2 liters of about 0.1 N HCl solution from the concentrated reagent?

